Anti-leukemic effects of the V-ATPase inhibitor Archazolid A

نویسندگان

  • Siwei Zhang
  • Lina S. Schneider
  • Binje Vick
  • Michaela Grunert
  • Irmela Jeremias
  • Dirk Menche
  • Rolf Müller
  • Angelika M. Vollmar
  • Johanna Liebl
چکیده

Prognosis for patients suffering from T-ALL is still very poor and new strategies for T-ALL treatment are urgently needed. Our study shows potent anti-leukemic effects of the myxobacterial V-ATPase inhibitor Archazolid A. Archazolid A reduced growth and potently induced death of leukemic cell lines and human leukemic samples. By inhibiting lysosomal acidification, Archazolid A blocked activation of the Notch pathway, however, this was not the mechanism of V-ATPase inhibition relevant for cell death induction. In fact, V-ATPase inhibition by Archazolid A decreased the anti-apoptotic protein survivin. As underlying mode of action, this work is in line with recent studies from our group demonstrating that Archazolid A induced S-phase cell cycle arrest by interfering with the iron metabolism in leukemic cells. Our study provides evidence for V-ATPase inhibition as a potential new therapeutic option for T-ALL.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeting V-ATPase in primary human monocytes by archazolid potently represses the classical secretion of cytokines due to accumulation at the endoplasmic reticulum.

The macrolide archazolid inhibits vacuolar-type H(+)-ATPase (V-ATPase), a proton-translocating enzyme involved in protein transport and pH regulation of cell organelles, and potently suppresses cancer cell growth at low nanomolar concentrations. In view of the growing link between inflammation and cancer, we investigated whether inhibition of V-ATPase by archazolid may affect primary human mono...

متن کامل

The V-ATPase-inhibitor archazolid abrogates tumor metastasis via inhibition of endocytic activation of the Rho-GTPase Rac1.

The abundance of the multimeric vacuolar ATP-dependent proton pump, V-ATPase, on the plasma membrane of tumor cells correlates with the invasiveness of the tumor cell, suggesting the involvement of V-ATPase in tumor metastasis. V-ATPase is hypothesized to create a proton efflux leading to an acidic pericellular microenvironment that promotes the activity of proinvasive proteases. An alternative...

متن کامل

Inhibition of the V-ATPase by Archazolid A: A New Strategy to Inhibit EMT.

Epithelial-mesenchymal transition (EMT) induces tumor-initiating cells (TIC), which account for tumor recurrence, metastasis, and therapeutic resistance. Strategies to interfere with EMT are rare but urgently needed to improve cancer therapy. By using the myxobacterial natural compound Archazolid A as a tool, we elucidate the V-ATPase, a multimeric proton pump that regulates lysosomal acidifica...

متن کامل

Vacuolar-ATPase Inhibition Blocks Iron Metabolism to Mediate Therapeutic Effects in Breast Cancer.

Generalized strategies to improve breast cancer treatment remain of interest to develop. In this study, we offer preclinical evidence of an important metabolic mechanism underlying the antitumor activity of inhibitors of the vacuolar-type ATPase (V-ATPase), a heteromultimeric proton pump. Specifically, our investigations in the 4T1 model of metastatic breast cancer of the V-ATPase inhibitor arc...

متن کامل

Mode of cell death induction by pharmacological vacuolar H+-ATPase (V-ATPase) inhibition.

The vacuolar H(+)-ATPase (V-ATPase), a multisubunit proton pump, has come into focus as an attractive target in cancer invasion. However, little is known about the role of V-ATPase in cell death, and especially the underlying mechanisms remain mostly unknown. We used the myxobacterial macrolide archazolid B, a potent inhibitor of the V-ATPase, as an experimental drug as well as a chemical tool ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015